Elective Orthopedic Surgery in Patients With Inhibitors:
The Hematologist/Orthopedic Surgeon Consult
Hemophilic Arthropathy and the Multidisciplinary Team Approach to Patient Management

Prasad Mathew, MD, FAAP
Professor of Pediatrics
Director, Hemophilia and Hemostasis Program
University of New Mexico
Albuquerque, New Mexico
The Multidisciplinary Approach: Team Players

Core team members include:

- Hematologist
- Nurse coordinator
- Physical therapist
- Licensed social worker

Subspecialists on the team include:

- Orthopedic surgeon
- Occupational therapist
- Dentist
- Geneticist
- Hepatologist
- Infectious disease specialist
- Immunologist

The Multidisciplinary Approach: Goals

Utilizing a team approach in hemophilia care ensures the following:

• Accurate diagnosis
• Prompt and effective treatment
• Fewer hospitalizations
• Healthy joints and muscles
• Support for patients and their families

Musculoskeletal Complications of Hemophilia

• Intra-articular hemorrhage (hemarthrosis) is clinical hallmark of hemophilia¹,²

• Hemarthrosis typically occurs before 2 years of age in severe hemophilia (clotting factor level <1%)³

• If inadequately treated, repeat bleeding leads to progressive deterioration of the joint and muscles, resulting in⁴:
 - Severe loss of function
 - Loss of motion
 - Muscle atrophy
 - Contractures

Synovitis and the Cycle of Joint Damage

- Synovitis is recurring inflammation of the synovial membrane, resulting from repeat joint bleeds
- Single hemarthrosis may give rise to synovitis
- Synovitis predisposes target joint to recurrent hemarthrosis, initiating cycle of chronic synovitis, inflammatory arthritis, and progressive arthropathy

Late Hemophilic Arthropathy

- Natural history of hemophilic synovitis is progression to end-stage arthropathy
- Fibrous tissue
 - Contractures
 - Fibrous ankylosis
- Progressive muscle atrophy
- Joint subluxation
- Large periarticular synovial cysts in adjacent bone

Photo courtesy of Amy Shapiro, MD, and Medscape.com.

Effects of Arthropathy

- Joint bleeds profoundly increase the morbidity of patients with hemophilia:
 - Weight-bearing issues
 - Limited limb use
 - Impact on school/work attendance
- These outcomes result in a decrease in quality of life (QoL) for affected patients with hemophilia and their caregivers\(^1,2\)
- QoL is significantly impaired in children with hemophilia\(^3\)

Common Sites of Joint Bleeding

- Knee: 45%
- Elbow: 30%
- Ankle: 15%
- Shoulder: 3%
- Wrist: 3%
- Hip: 2%
- Other: 2%

Treatment Options for Hemophilic Arthropathy

- Management will depend on
 - Stage at identification
 - Patient’s symptoms
 - Available resources

- Physiotherapy is a vital component of any treatment program

- Control of arthropathic pain: analgesics or narcotics if absolutely necessary

- Conservative management: serial casting, bracing, orthotics (eg, shoe inserts, crutches)

- Elective orthopedic surgery
Patients With Hemophilia and Inhibitors: The Burden of Joint Disease

- Prolonged bleeding episodes
- Increased risk for synovitis
- Increased joint disease
- Increased risk for arthropathy
- Quality of life significantly associated with orthopedic status

Surgical Challenges in Patients With Hemophilia and Inhibitors

- Major orthopedic interventions present a challenge to the surgeon due to:
 - Contracted flexor muscles (decreased ROM)
 - Chronic synovitis (leads to extensive fibrosis)
 - Severe change in anatomic axis of the joint
 - Poor bone stock (osteopenia)

- Patients with inhibitors
 - Hemostasis may be more difficult to control

Successful orthopedic surgery can result in:

- Improved joint function
- Improved ROM
- Pain reduction or resolution
- Fewer bleeding episodes
- Improved mobility
- Improved quality of life

Successful reconstructive surgery in patients with hemophilia requires an experienced multidisciplinary team and should be performed at established hemophilia treatment centers (HTC)

- Thorough preoperative planning and patient counseling
- Vigorous postoperative rehabilitation regimen
- Attention to infection prevention recommendations

Mainstay of programs: education of patients and healthcare professionals

The Bypassing Agents
Products for Treating Hemophilia A With Inhibitors

- Prothrombin complex concentrates (PCCs), activated prothrombin complex concentrates (aPCCs/FEIBA)
 - Active form may be more effective (≈65%) than nonactive form
 - FEIBA shown to be beneficial ≈50%-90% of the time
 - For joint bleeds, FEIBA given by bolus infusion preoperatively; subsequent doses q6-8h at 50-75 IU/kg⁻¹ to maximum dose of 200 IU/kg⁻¹

- Recombinant activated factor VIIa (rVIIa)
 - For patients with inhibitors, the recommended dose is 90 µg/kg⁻¹ preoperatively by bolus infusion; subsequent doses q2h for at least 48h
 - Shown to control bleeding in 70%-100% of bleeding episodes
 - Larger doses may be required for serious bleeding or surgery

The Bypassing Agents: Comparative Efficacy

- Several studies have evaluated variations of efficacy\(^1,2\)
- Overall review comparing efficacy is lacking\(^2\)
- Individual studies have varying definitions and estimates of efficacy, making a direct comparison difficult\(^2\)
- FEIBA and rVIIa appear to exhibit similar effect on joint bleeds\(^1\)
- At recommended doses, both FEIBA and rVIIa effectively and safely control bleeding in patients with inhibitors undergoing surgical procedures\(^3\)

The Bypassing Agents: Benefits and Risks

- Bypassing agents are able to achieve hemostasis independent of factor VIII or factor IX activity\(^1\)
- aPCCs have potential for anamnestic response\(^2\)
- With rVIIa, no anamnestic response and no risk of human virus transmission\(^2\)
- With bypassing agents, thrombosis is a rare but well recognized potential complication\(^3-5\)
- Bypassing agents are not always effective and can have unpredictable hemostatic response\(^1,2\)

Elective Orthopedic Surgery in Patients With Hemophilia and Inhibitors

• Availability of bypassing agents (eg, FEIBA and rVIIa) has made it possible to perform various surgical procedures in hemophilia patients with inhibitors
 ▪ Further studies are warranted, however, to determine efficacy in major surgery
• In the absence of robust clinical data, personal experience and availability of bypassing agent may guide treatment choice

Role of the Hematologist

- Present the patient as hemostatically “normal” as possible for the surgery
- Maintain adequate hemostasis in the intraoperative period
- Maintain adequate hemostasis in the postoperative period without having the patient bleed at the surgical sites or develop a thrombosis because of excessive factor use and/or immobilization
- Maintain hemostasis during the time that physical therapy is initiated in the postoperative period
- Aid with pain control
- Help direct team efforts in the preoperative and postoperative periods
The Orthopedic Surgeon’s Perspective: Pathogenesis and Orthopedic Management of Hemophilic Arthropathy

James V. Luck, Jr, MD
President, CEO & Medical Director
Orthopaedic Hospital
Professor and Vice Chairman
UCLA/Orthopaedic Hospital
Department of Orthopedic Surgery
Los Angeles, California
Hemophilia Treatment Center
Los Angeles Orthopaedic Hospital

- Founded 1962
- Federal treatment center grant 1964
- Patient base 400
- Clotting factor replacement 1966
- >800 procedures
Hemophilic Arthropathy

Target Joints
Treatment of Chronic Hemarthrosis

- Clotting factor replacement
- Physical therapy
- Synovectomy
 - Surgical
 - Open
 - Arthroscopic
 - Non-surgical
 - Radiosynovectomy
Chronic Hemarthrosis: Natural History

Cumulative No. of Joint Bleeds

Pettersson Score (max 78)

0 50 100 150 200

Pette

rsson Sc

50 100 150 200

Chronic Hemarthrosis
Treatment of Chronic Hemarthrosis: Synovectomy

Radiosynovectomy

- Reduces hemarthroses
- Minimally invasive
- Rare hospitalization
- Reduces clotting factor requirements
- Preserves ROM
- Minimal cost 1%-5% of surgical synovectomy
- Minimal discomfort
Treatment of Chronic Hemarthrosis: Radiosynovectomy

Ideal Candidate

- Frequent hemarthrosis: 2-3 bleeds/month
- Target joint
- Failed conservative treatment with clotting factor replacement and PT
- No radiologic evidence of joint damage

<table>
<thead>
<tr>
<th></th>
<th>32P</th>
<th>90Y</th>
<th>198Au</th>
<th>86Re</th>
<th>165Dy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>β</td>
<td>β</td>
<td>β, Y</td>
<td>β, Y</td>
<td>β</td>
</tr>
<tr>
<td>Particle size (μ)</td>
<td>6-20</td>
<td>10-20</td>
<td>3</td>
<td>0.1</td>
<td>3-5</td>
</tr>
<tr>
<td>Penetration (mm)</td>
<td>3-5</td>
<td>4-10</td>
<td>1-4</td>
<td>1-4</td>
<td>6</td>
</tr>
<tr>
<td>Half-life (days)</td>
<td>14</td>
<td>2.4</td>
<td>2.7</td>
<td>3.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Radiosynovectomy: Procedure

- Short
- Outpatient department
- Local anesthetic
- Joint access
- Drainage
- Injection of ^{32}P
Radiosynovectomy: Efficacy

Effectively reduces frequency of bleeding

Outcomes:
- Excellent or good results: 80%
- Excellent + Good = >75% bleeding reduction
- Excellent = 100% bleeding reduction

Radiosynovectomy: Safety

- No growth plate disturbance
- Cartilage is resistant to radiation
- Minimal potential for radiation-induced neoplasia
 - More than 5000 RS for RA
- No premalignant chromosomal changes

Extra-articular radiation levels >1% in only 1 patient

Surgery for Advanced Arthropathy

Hemophilia Treatment Center at Orthopaedic Hospital
1970-2002
More than 500 surgeries

- Hip: 14%
- Ankle: 14%
- Elbow: 14%
- Shoulder: 4%
- Knee: 54%
Radiographic Progression
TKR in Hemophilia

Bone Stock Deficiency

Deformity

TKR = total knee replacement.
TKR in Hemophilia (cont)

Arthrofibrosis
TKR in Hemophilia (cont)
TKR—Demographics

- Mean age: 40 years (18-70)
- 93%: Severe hemophiliacs
- 67%: HIV (+)
- Mean CD4 count: 448 cells/mm3 (33-1260)
Range of Motion

<table>
<thead>
<tr>
<th></th>
<th>Preop</th>
<th>Postop</th>
<th>Latest F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of Motion</td>
<td>57°</td>
<td>68°</td>
<td>72°</td>
</tr>
</tbody>
</table>

\[P = .001 \quad P = .3 \]
Knee Society Functional Score

- Mean F/U: 8 years (2-22 y)
- Mean score: 89 points (15-100)

<table>
<thead>
<tr>
<th>KS-Functional Score</th>
<th>% of Knees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent (85-100)</td>
<td>97</td>
</tr>
<tr>
<td>Good (70-84)</td>
<td>31</td>
</tr>
<tr>
<td>Fair (60-69)</td>
<td>0</td>
</tr>
<tr>
<td>Poor (<60)</td>
<td>3</td>
</tr>
</tbody>
</table>
TKR–Infection

- 14 knees in 10 patients (16%)
- 10/46 bilateral TKR (22%)
- Mean: 5 years (6 m-25 y)

<table>
<thead>
<tr>
<th>Dx of Infection</th>
<th>No. of Knees</th>
</tr>
</thead>
<tbody>
<tr>
<td><6 months</td>
<td>0</td>
</tr>
<tr>
<td>6 months - 1 year</td>
<td>3</td>
</tr>
<tr>
<td>1 - 5 years</td>
<td>7</td>
</tr>
<tr>
<td>5 - 10 years</td>
<td>2</td>
</tr>
<tr>
<td>>10 years</td>
<td>2</td>
</tr>
</tbody>
</table>

- Irrigation + debridement + A/B: 7
 - Persistent infection: 2
- Component removal: 7
 - No recurrent infections
 - Two-stage revision: 5
 - Arthrodesis: 2
Infection–HIV

<table>
<thead>
<tr>
<th>HIV</th>
<th>No Infection</th>
<th>Infection</th>
<th>Total</th>
<th>Incidence</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>26</td>
<td>4</td>
<td>30</td>
<td>13%</td>
<td>.6</td>
</tr>
<tr>
<td>Positive</td>
<td>50</td>
<td>10</td>
<td>60</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>14</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fisher exact test

<table>
<thead>
<tr>
<th>HIV</th>
<th>Infection</th>
<th>No Infection</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>458</td>
<td>446</td>
<td>.6</td>
</tr>
</tbody>
</table>

Rank sum test
Infection–Prophylaxis

- Meticulous antisepsis with self-infusion
- Regular medical checkups
- Immediate reporting of any type of infection
- Prophylactic antibiotic prior to dental work or any other contaminated procedure
Total Knee Replacement

- Long-lasting solution for end-stage arthropathy
- 96% mechanical survival at 10 to 20 years (non-inhibitor patients)
- Increased risk of late infection
- Attention to preventive measures
For more educational activities, please visit us at:

www.bloodcmecenter.org